If SecA = x + 1/4x , Then prove that SecA + TanA = 2x or 1/2x
If SecA = x + 1/4x , Then prove that SecA + TanA = 2x or 1/2x
SecA = x +1/4x
SecA = x +1/4x
∴, Sec²A = (x+1/4x)²
= x² + 2.x.1/4x + 1/16x²
= x² + 1/2 + 1/16x²
Now,
Sec²A - Tan²A = 1
Sec²A - Tan²A = 1
⇒ Tan²A = Sec²A - 1
⇒ Tan²A = x² + 1/2 + 1/16x² - 1
⇒ Tan²A = x² + 1/16x² - 1/2
⇒ Tan²A = x² - 2.x.1/4x + 1/16x²
⇒ Tan²A = (x-1/4x)²
⇒ TanA = ± (x-1/4x)
∴
CASE 1: TanA = x - 1/4x
SecA + TanA
= x + 1/4x + x -1/4x
CASE 1: TanA = x - 1/4x
SecA + TanA
= x + 1/4x + x -1/4x
= 2x
CASE 2: TanA = -(x - 1/4x)
CASE 2: TanA = -(x - 1/4x)
SecA + TanA
= x + 1/4x - (x - 1/4x)
=x + 1/4x - x + 1/4x
= 1/4x + 1/4x
= 1/4x + 1/4x
= 2/4x
= 1/2x (Proved)
ok
ReplyDeletegud
ReplyDelete